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 

Abstract— we present the first decentralized multi-copter 

flock that is capable of stable autonomous outdoor flight. By 

autonomous we mean that all members navigate themselves 

based on the dynamic information received from other robots 

in the vicinity, without any central data processing or control.  

Instead, all the necessary computations are carried out by 

miniature on-board computers. The only global information 

the system exploits is from GPS receivers, while the units use 

wireless modules to share this positional information with other 

flock members locally. Collective behavior is based on a 

decentralized control framework with bio-inspiration from 

statistical physical modelling of animal swarms. The model 

allows for stable group flight even in noisy, windy, delayed and 

error-prone environment. Using this framework we 

successfully demonstrated several fundamental collective flight 

tasks with up to 11 units: i) we achieved self-propelled flocking 

in a bounded area with self-organized object avoidance 

capabilities and ii) performed collective target tracking with 

stable formation flights (grid, rotating ring, straight line). With 

realistic numerical simulations we demonstrated that the local 

broadcast-type communication and the decentralized 

autonomous control method allows for the scalability of the 

model for larger flock sizes. 

INTRODUCTION 

Collective motion is one of the most spectacular 
phenomena in nature, where the local behavior of many 
autonomous, similar individuals results in complex motion 
patterns, creating a fluctuating meta-organism [1]. Besides 
being truly astonishing, flocking has many advantages in 
natural systems, since a group of animals or people is: i) 
more effective when solving foraging or navigational tasks 
[2]; ii) robust in terms of the knowledge the flock holds about 
its actual goal due to redundancy and the system’s intrinsic 
parallel-processing structure; iii) more alert regarding 
environmental threats and more defensive against attacks [3] 
[4]. Such natural systems provide bio-inspiration for swarm 
robotics aiming at creating nature-like, i.e., efficient flocks of 
artificial units with decentralized control. 

There are already a great number of two-dimensional 
ground-based robotic swarms, being able to perform 
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intriguingly complex tasks, such as playing soccer [5], 
carrying objects together  [6], being self-organized [7], 
performing self-assembly [8] or simply being large-scale [9] 
[10]. Implementing robots capable of moving in three-
dimensions has a great extra potential. However, 
achievements concerning aerial flocks have been rather 
limited so far. This fact comes partly from the current 
technological difficulties of creating even one reliable flying 
object that is capable of autonomously performing all the 
necessary flight maneuvers, such as stable hovering, flying at 
predetermined speed in a given direction or adapting to a 
time-dependent altitude and/or flight direction quickly 
enough. However, the recent appearance of small-scale, 
lightweight flying robots, commonly named as multi-copters, 
seems to be filling this niche perfectly. Another severe 
technical difficulty is the proper perception of the 
environment and other flock members, i.e., sensing absolute 
or relative positions reliably. All current solutions to this 
challenge are limited and depend on state-of-the-art 
technology: computer-vision, infrared, ultrasonic, laser or 
digital wireless. In order to overcome some of the constraints 
of these approaches, we have chosen a combination of GPS 
devices and wireless communication to obtain local relative 
positional data. In this way we could focus on our primary 
goal, the implementation of our control algorithms into a real 
outdoor system. 

There have been several remarkable attempts for the 
creation of 3D flying flocks. Welsby et al. used three 
motorized balloon-like objects that were wandering in the air 
together indoor [11]. De Nardi and Holland proposed (but did 
not create) a 3D flock of helicopters [12]. Hauert et al. 2011 
presented an autonomous flock of 10 fixed-wing UAVs 
flying at relatively large distance from each other [13]. Their 
system is a noteworthy example of an autonomous Reynolds-
flock [15], although their UAVs did not have the eventual 
constraint of avoiding each other since they flew at different 
fixed altitudes. As we will see, repulsion between units is the 
origin of self-excited oscillations that are quite challenging to 
handle. Stirling et al. stated that they created an autonomous 
indoor quadrotor flock of 3 units. In fact, two of the robots 
were attached to a ferromagnetic ceiling and only one unit 
was flying at a time, using the other two as reference points 
for navigation [16]. Kushleyev et al. created the most 
remarkable flock of 20 miniature quadcopters, but their 
system is not autonomous by our definition since a central 
computer calculates the navigational instructions for all 
robots using an external, fixed indoor positioning system 
[17]. Bürkle et al. created an outdoor quadcopter swarm, but 
with intensive central processing at a ground station [18]. 
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In this paper we present the first outdoor ‘GPS-vision’ 
based swarm of autonomous flying robots with decentralized 
self-control and stable self-organization capabilities. Our 
approach was to use commercially available, affordable, open 
source products as base units, already having a low-level 
control of flight stability. We have expanded these units with 
our self-developed autopilot board and custom-designed 
flocking algorithms for the high-level control of the units 
within the swarm.   

STRUCTURE OF A UNIT 

A. Basic Unit 

Our flying robots are based on a partially open source 
quadcopter, called MK Basicset L4-ME, from MikroKopter 
Co., Germany [19] (Fig. 1), capable of performing onboard 
self-stabilization and altitude hold. In its original form, it is 
controlled manually with a standard R/C remote controller. 

The main board of the copter accepts virtual controller 
signals (pitch/roll/yaw and altitude setpoint) from an arbitrary 
extension board; we used this channel to gain full automatic 
control over the unit, while maintaining the option of manual 
interruption with the remote controller. 

 

Figure 1.  Image of a unit with the commercial base copter below, the 
custom made (green) extension board above and the GPS on top. Take-off 

mass is around 1 kg, tip-to-tip diameter is 80 cm. We achieved a maximum 
of 20 minutes flying time by using 3000mAh, four-cell LiPo batteries. 

B. Processor Board 

We have developed an extension board (called 
FlockControl) that contains a 3D gyroscope, a 3D 
accelerometer, a 3D magnetometer, a pressure sensor, a GPS 
receiver, a 2.4GHz XBee unit (for digital wireless 
communication) and a GumStix Overo Water mini-computer 
with standard Linux OS. The extension board connects to the 
main board through SPI. It receives information from the 
base unit about error conditions and inner state variables 
(attitude, heading, battery level, remote controller signals) 
and communicates with other flock members via XBee 
(sharing ID, position, velocity, attitude and status info). The 
extension board feeds these inputs into the flocking algorithm 
and sends the calculated virtual steering signals to the low 
level control board. The main refresh rate of the steering 
signals is 40 Hz (Fig. 2), individual GPS refresh rate is 5 Hz 
and XBee communication rate is 10 Hz. 

 

Figure 2.  The main structure of one unit. Communication methods 
between parts are indicated on the arrows. 

C. Communication 

The XBee modules work in broadcast sending mode, 
units send data without establishing one-to-one connection or 
mesh network with other units. Flock members process 
incoming XBee packets only from other robots, which are 
inside their communication range (typically around 50–100 
m). That is similar to the way e.g. birds fly in a flock, mostly 
using the information from neighboring birds [20]. This 
locality of the communication is a simple way to keep the 
network scalable to larger flock sizes. 

D. Velocity Control 

Automatic steering signals are calculated in a world 
reference frame. The three axes of the control (North, East, 
Down) are independent from each other, due to the structure 
of the quadcopter. In the vertical direction we rely on the 
original altitude-hold algorithm of the L4-ME copter that 
maintains a pre-defined altitude during most of the flight. 
Autonomous self-organization thus takes place in a quasi-
two-dimensional space, which is satisfactory for many 
applications, like area coverage or distributed search. During 
the development phases we defined a slightly different 
altitude set point for all copters (in the 5–15 m range above 
ground) to have a safety height distance between units, in 
case unexpected horizontal control errors would occur. 
However, we managed to carry out the latest flights with all 
units at the same altitude, with true repulsion between units in 
the horizontal plane. 

For the two horizontal axes we implemented a standard 
PID based velocity control algorithm that converts the target 
velocity output of the flocking algorithm into the virtual 
steering signals. Two independent PID controllers are used 
for the two global axes (North and East) and the target 
steering signal is converted into a body-fixed coordinate 
system based on the heading information calculated from the 
signals of the magnetometer and the other inertial sensors.  

Since the P and D terms of the velocity PID tend to zero 
as the measured velocity is getting closer to the target 
velocity, the I term must maintain the necessary output signal 
level for constant speed flight. When flying in a tight flock, 
quick response is essential; therefore, we have added a linear 



  

feed-forward (also known as bias) term to the control loop, 
by which the system can predict the magnitude of the 
necessary adjustment based on earlier experience. This way, 
the I term only needs to fine-tune the estimated stick response 
and thus the relaxation time of the control loop is 
significantly reduced. To minimize oscillations of an 
individual copter, we tuned the PID for slower 
responsiveness and avoided overshoot of the control. 

The performance of the velocity controller was tested in a 
mobile target tracking setup and it was found that the system 
is stable and performs well even in moderate wind (up to 5 
m/s) with an approximately 1.5 s overall time lag. It is 
important to note that the PID loop is responsible only for a 
minor portion of this lag. Other delay-inducing factors are the 
reaction time of the base unit to the steering signal, the low 
GPS update rate and the limited acceleration due to the 
inertia of the copters (Fig. 3). 

A price for the stable and overshoot-free, but slower 
control is paid back at the flock’s level, where interesting 
chaotic oscillations can emerge due to delays, similarly to 
ghost traffic jams on highways, caused by the slow reaction 
time (~1s) of humans [21]. These oscillations had to be 
handled by our flocking algorithm. 

 

Figure 3.  Snapshot of a general target tracking measurement with PID 

velocity control (P=30, D=30, I=2). Main figure shows the measurement in 
time, the inset shows the correlation between target velocity (the input of 

the PID controller) and measured velocity (the final output of the system) as 

a function of time difference between them. An average time lag of around 
1.5 s is present in the control system even if tuned well, due to PID 

relaxation time, base unit reaction time and inertia limited acceleration. 

OTHER SYSTEM COMPONENTS 

Ground Control 

We have also developed a ground station console 
application for real-time monitoring and debugging purposes. 
The application runs on an external computer and gathers 
general telemetry information from all flock members 
through XBee. Besides monitoring the state of the flock, the 
ground station can be used for several other purposes, like 
requesting debugging packets from individual copters with 
detailed information, changing system parameters in flight to 
tune behavior, batch uploading new settings, simulate errors 
or force landing of individuals or all units at once, too. These 

are all essential features when one works with a large group 
of robots at once. 

 

Simulation Framework 

We have developed a realistic simulation framework to 
test various flocking algorithms and to optimize their 
parameter space before flying with real robots. One main 
goal of the simulations was to investigate the effects of all 
sorts of delays present in the system, i.e., reaction time 
arising from communication and data processing and 
relaxation time of the controller. A flocking algorithm had to 
be found that is not sensitive to large delays in terms of 
stability, in other words, in which delays do not generate 
undesired oscillations. We combined several techniques to 
achieve this goal, such as using smooth functions instead of 
sharp ones, using slack in potential valleys or using special 
over-damped dynamics in the flocking algorithms. 

The simulation framework also takes into account many 
of the inaccuracies of a real system: the position and velocity 
measurement error, general Gaussian noise corresponding to 
the environmental effects, the low update rate of the GPS and 
the limited range of the communication. The final algorithms 
had to remain stable in that error-prone, realistic framework, 
as well. More details about the simulation framework and the 
stability optimization of the algorithms are discussed in a 
separate paper [14]. 

DECENTRALIZED CONTROL ALGORITHM 

The control algorithm has a structure analogous to that of 
the first flocking model of Reynolds [15]: a self-propelled 
particle needs short-range repulsion from other units, 
medium-range velocity alignment with neighbors and a 
global positional constraint to remain with the flock. 
However, finding the best candidate terms for these tasks in a 
real environment is not trivial and could be application 
dependent.  

Below we specify how the algorithm described in [14] 
was implemented for the real flocking and formation flights 
in the present work. The basic model we use consists of the 
following main parts (upper indices in the equations mark 
individuals in the flock).  

 Short-range Repulsion: Pair Potentials 

A repulsive distance-based potential acts between all 
close units to avoid collisions: 

  ⃗   
  {

  ∑    (      | ⃗  |)   
 ⃗  

| ⃗  |
 

   | ⃗  |     

            

 

where D is the spring constant of a repulsive half-spring, 

 ⃗    ⃗   ⃗  is the difference of positions of unit i and j, r0 
is the equilibrium distance, i.e., the distance above which 
there is no repulsion between units and r1 is used to define an 
upper threshold for the repulsion to avoid over-excitation of 
units.  

In time-lagged systems with even small reaction time, 
potential functions in the control can be the source of self-



  

excited oscillations [22]. Even though we used only linear 
and limited repulsive terms, oscillations emerged in some 
situations. To avoid these, we forced over-damped dynamics 
through the next term, the velocity alignment. 

Middle-range Velocity Alignment: Viscous Friction 

Units close to each other damp their velocity difference to 
reduce oscillations and to synchronize collective motion with 
a viscous friction-like term, similar to the one in [23] or [24]: 

  ⃗    
        ∑

 ⃗⃗  

(   (| ⃗  |                ))
       

where Cfrict is the viscous friction coefficient,  ⃗    ⃗  
 ⃗  is the velocity difference between units i and j, r2 defines a 
constant slope around the equilibrium distance r0, finally, r1 
defines a threshold again to avoid division by close-to-zero 
distances due to e.g. measured GPS position error. 

Note that equations 1 and 2 are both dependent of r0 to 
allow for the dynamic tuning of flock density. This is 
essential when e.g. one needs to extend the model to higher 
velocity ranges, where larger ‘breaking distance’ is needed 
between units. 

Global Positional Constraint I: Flocking 

One way of keeping individual robots together is to define a 

bounded area around a global reference point and implement 

a general self-propelled flocking model [20] that makes the 

units move around within the walls of the area. The self-

propelling term is defined as 

  ⃗   
        

 ⃗⃗ 

| ⃗⃗ |
  

where vflock is a constant flocking speed the units try to 

maintain. The bounding walls are pre-defined globally, but 

they appear as local attractive shill agents [25] that try to 

pull units back towards the center of the flight area through 

virtual velocity alignment: 
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where Cshill is the viscous friction coefficient of the wall, 

 ⃗    is the center of the flight area, i.e., the position of a 

global reference/target point and f(x) is a smooth transfer 

function:  
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where R is set to be the distance between the reference 
point and the wall and d defines the width of the decay, i.e., 
the softness of the wall. 

With this definition the soft-wall interacts with the units 
in a smooth way, only when they are outside of the flight 
area. Object avoidance in general can also be introduced in a 
similar way with repulsive shill agents. 

Note that in the above model all interaction terms are local 

or quickly decay with distance, corresponding to the short 

range of the communication. Scalability to larger flock sizes 

is analyzed in realistic numerical simulations. 

Global Positional Constraint II: Formation Flights 

Another option for global attraction can be introduced 

without explicit self-propelling, through formation flights 

around a (static or dynamic) global reference/target point. 

For this, we split target tracking into two parts: 
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where  ⃗   
  defines how units arrange themselves into shapes 

relative to the individually calculated center of mass: 
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while  ⃗   
  defines how the center of mass follows the target 

with smoothly adjusted, variable speed: 
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Constants α and β in the range of [0,1] define the strength 
of the velocity components relative to v0, a maximal tracking 

velocity,  ⃗   
  is the locally calculated center of mass,  ⃗   

  is 

the desired position in the formation around  ⃗   
  and 

f(x,R,d) is the smooth transfer function introduced in equation 
5 to avoid abrupt changes in the dynamics. 

For basic shapes, like a straight line, a (rotating) circle or 
a simple lattice-like grid, one piece of global information is 
needed: N, the number of robots, which defines the size of 

the formation. The equations defining  ⃗   
  are the following: 

i) for a simple grid, we have  ⃗   
   ⃗   

  and   
  

 
     

  

 
, where g(N) is a heuristic function defining 

the radius of the smallest circle that can contain N unit 
circles [26]. This way all units can fit in the target area 
around the center of mass of the flock tightly packed. 
The grid-like arrangement is settled due to the pairwise 
repulsion and the velocity alignment. 

ii) for a ring, we define  ⃗   
  as the intersection of the ring 

around  ⃗   
  and the bisectrix of the two closest 

neighbors defined with a simple angle-based signed 
metric around the center of mass. The radius of the ring 
has to be defined to fit N robots on its contour. R is set 
to a small value or zero as the transfer function is used 
for individual position tracking now. A rotating ring can 
be achieved with a simple self-propelling term in the 
tangential direction relative to  ⃗     The direction of 
rotation can be chosen in a self-organized manner 
according to the direction of the average tangential 
velocity of all units. 

iii) for a line we define the signed neighborhood metric as 

the projected distance on the line from  ⃗   
  and set 

 ⃗   
  as the average position of the two neighbors on the 

line. Units with only one or zero neighbors must 
approach the closest end of the line to ensure that units 



  

settle with the equilibrium distance (r0) between them. R 
is set to a small value or zero again. The angle of the 
line can be defined in a self-organized way from a linear 
fit of actual positions. 

Full Dynamic Equation 

The final form of the velocity evolution is similar to the 
so-called optimal velocity model describing traffic jams [21] 
or escape-panic [27]: 

 ⃗         ⃗     
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where τ is the characteristic time needed to reach the 

velocity  ⃗   
   ⃗     

 . 

Equation 9 is used as the main differential equation in the 
numeric simulation and also as the main function determining 
the desired velocity of a copter. Note that in equation 9 the 
SPP flocking and formation-flight models are mixed, but they 
are usually used separately, depending on the actual task of 
the flock. Separation is achieved by setting vflock and v0 to the 
appropriate value. 

To compensate for the time-lag previously described, the 

PID controller input  ⃗        is always calculated for a 
time instance far ahead t. In other words we tell the system in 
the present what to prepare for in the future, allowing it to 
react in time. In the simplest linear approximation this is 
achieved by selecting a large Δt (in the magnitude of 1 s or 
so). 

Note that the final target velocity is always restricted in 
the simulations as well as in the real flocking algorithm. This 
limits the speed of the units for safety reasons. 

Table I summarizes optimal parameter choice for the 
algorithms. 

RESULTS 

We successfully established the first decentralized, 
autonomous multi-copter flock in an outdoor environment, 
with swarms of up to 10 flying robots (Fig. 4), flying stably 
for up to 20 minutes.  

 

Figure 4.  Snapshots of quadcopter flocks of 10 units. Nightlight image: 

robots are following a target in a grid formation (r0 = 6 m, v0 = 3 m/s). 

Daylight image: SPP model (r0 = 10 m, vflock = 2 m/s). 

We implemented a flock of two hierarchical levels with a 
leader robot moving along a pre-defined rectangular path and 
9 other robots following the leader in a stable, tight grid 
formation (Fig 5). To assess the coherence of the flock, we 
calculated the velocity correlation of the robots as a simple 
order parameter in the range of [-1, 1]: 
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The resulting high velocity correlation indicates the stability 
of the flock (see caption of Fig 5. for details). 

 

Figure 5.  GPS tracklogs of 9 quadcopters in a flock flight, following a 10th 

leader kopter as a target (red thick arrows). The target takes off from the 

center and follows a pre-defined rectangular path (grey rectangle) twice. 

Inset shows the velocity correlation ( ) of the flock, with  ̅        

      for the t=[25, 250]s period (without take-off). The low-correlation 

spikes correspond to the direction change at the corners of the path 
(indicated by blue lines in the inset). The smooth tracklogs and the high 

velocity correlation are both indications of stable flocking. Average wind 

TABLE I.  OPTIMAL VALUES OF PARAMETERS 

Name Value Unit Comment 

pair potential lattice constant (r0) 6-12 m Slack is given due to the large GPS position estimation error 

pair potential spring constant (D) 1 1/s2  

friction coefficient (C) 10–20 m2/s Higher values result in more over-damped, slower but more stable flocks 

preferred velocity (vflock, v0) 2–4 m/s Note that the max flocking/tracking velocity should be smaller than the max allowed velocity 

TRG coefficient (α) 1  A slightly different behavior is achieved if α+ β=1 and there is no need for cut-off 

COM coefficient (β) 1  A slightly different behavior is achieved if α+ β=1 and there is no need for cut-off 

transfer function deceleration slope (v0/d) 0.4 1/s note that this fixed slope is defined on the distance-velocity plot 

 



  

speed was less than 3 m/s. Waypoint rectangle size is 60x40 m. Other 

parameters: v0 = 2 m/s; r0=10 m. 

We successfully implemented the same setup with 
formation flights of rotating ring and line shapes, as well 
(Fig. 6). We could change equilibrium distance and switch 
between shapes in real-time via the R/C remote controller to 
achieve true self-organization of the formations while 
adapting to the new situations. General stability is quantified 
by the standard deviation of the closest neighbor distances of 
all units, which can be as small as 1 m throughout 1-10 
minute periods of a maintained formation (Fig. 6). 

 

Figure 6.  3D visualization snapshots based on GPS tracklogs of a real 

target tracking setup with formations of a rotating ring (left) and a line 
(bottom right). The yellow copter is the leader moving above a pre-defined 

path (black line), the red ones follow the leader with stable 2D formations. 

Top right: Average (red curve) and standard deviation (grey fields) of 
closest neighbor distances in the rotating ring setup. Equilibrium distance is 

increased from 7m to 17m and back through the R/C remote controller. The 

small standard deviation (comparable to GPS position error) indicates the 
stability and smoothness of the formation. vrotation = 2 m/s. 

The last setup we tested was a self-propelled model inside 
a ring shaped area (rin=15 m, rout=45 m). Fig. 7 shows 
consecutive periods of an emerging self-organized flock of 9 
copters circling inside the flight area just like boats [28] or 
locusts [29] do in a similar setup. 

 

Figure 7.  Top: GPS tracklogs from three consecutive 90 s periods of a SPP 
flock in a circular area after take-off. Bottom: velocity correlation 

corresponding to the three trajectory plots. Correlation cannot get high for 

long periods due to the circular area constraint, but the flock tends to 
organize itself into a coherent swirling motion inside the arena. r0=10 m; v0 

= 2 m/s. 

We performed numerical simulations to investigate the 

robustness of the system, especially when the characteristic 

size of the expected flock is larger than the communication 

range rC. Stability of flocking behavior can be measured 

locally with the parameter below: 
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       means that the velocity vectors of units close 

to each other (closer than r) are parallel during the simulated 

experiment. According to Fig. 8, stable flocks can be 

observed with characteristic size greater than 5r0, if rC >3r0. 

 

Figure 8.  Simulation results about          as a function of 
communication range rC. All data points are averaged over a 10 minute 

simulated experiment with 100 agents, within a 300 m wide square-shaped 
area and random initial conditions. The environmental effects are modeled 

with a Gaussian noise term added to the dynamics with           . The 

time delay of the communication is 1s. Other parameters:        

  
  

 
                      

 

 
              

CONCLUSIONS 

Decentralization in multi-robotic systems is one 
promising way of the future. Accordingly, our flocking 
algorithms run locally on every robot and do not rely on a 
ground station or any central data processing or control. We 
demonstrated the usability of our system with widely 
available GPS-based positioning; however, the framework is 
general, the algorithms work with any other sensory input 
from which relative position, velocity and attitude 
information can be obtained. Moreover, our approach results 
in a general high-level hardware and software control layer 
that can be easily transported to other swarming systems, as 
well. 

Stability of the flock fundamentally depends on the 
sensory errors and the delays in the system. GPS-INS 
(inertial navigation system) fusion could provide a method 
for more precise outdoor position and velocity estimation, 
while a control algorithm with more accurate feed-forward 
terms or learning capability could reduce the control 
relaxation time and thus the self-excited oscillations. 

Our current algorithms are two and a half dimensional. 
Flocking and formation flights are performed in two 



  

dimensions but units vary their altitude during individual 
take-off and landing. Group members have the possibility to 
join or leave the flock any time in the third dimension and 
they do not have to interact if they have sufficient altitude 
gap between them. This behavior is similar to most natural 
aerial flocks, like V-shaped migrating birds, thermalling birds 
or paragliders. In theory, the flocking algorithm can be 
extended to three dimensions, but in practice the third, 
vertical dimension has to be treated quite differently in all 
cases. Due to gravity and the flight characteristics of 
quadcopters height control has completely different dynamics 
compared to position control.  

With our current setup we could achieve a minimum of 
6–10 m equilibrium distance between the robots in the 0–4 
m/s velocity range. Considering ±2 m GPS accuracy, 1.5 s 
overall time lag and a random disturbance of wind, this is 
already the closest distance one can allow without the risk of 
collisions. In theory, the algorithms are not limited to the 
tested flock density or velocity range. With the dynamically 
tunable equilibrium distance a wide range of applications and 
flight situations can be handled. However, tighter flocks 
require better positioning accuracy, and higher speed implies 
a loosened flock to allow for sufficient ‘breaking distance’ 
between units.  

The true advantage of a flocking flight over a single 
flying robot stands in its increased ‘awareness’, robustness 
and redundancy. The flock, as a meta-unit, can detect the 
environment more efficiently and can operate much longer 
than its members individually, such as cells in a living 
organism or migrating locusts over the ocean. The 
application potential of our system is large, ranging from ad-
hoc mobile networks through distributed, self-organized 
monitoring of the environment (highway traffic, 
environmentally protected areas or agricultural lands) to 
stock delivery, rescue operation assistance, pest control, 
autonomous airport traffic control or even military 
applications. However, by demonstrating the stable flight of a 
truly autonomous, decentralized robotic flock, our main goal 
was to show that the various peaceful applications of drones 
are by now feasible. 
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